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Abstract
We use the Kardar–Parisi–Zhang equation with quenched noise in order to
study the relaxation properties of driven interfaces in disordered media. For
λ �= 0 this equation belongs to the directed percolation depinning universality
class and for λ = 0 it belongs to the quenched Edwards–Wilkinson universality
class. We study the Fourier transform of the two-time autocorrelation function
of the interface height Ck(t

′, t). These functions depend on the difference of
times t − t′ in the steady-state regime. We find a two-step relaxation decay
in this regime for both universality classes. The long time tail can be fitted
by a stretched exponential function, where the exponent β depends on the
universality class. The relaxation time and the wavelength of the Fourier
transform, where the two-step relaxation is lost, are related to the length of the
pinned regions. The stretched exponential relaxation is caused by the existence
of pinned regions which is a direct consequence of the quenched noise.

PACS numbers: 05.70.Ln, 68.35.Fx, 64.60.Ht

1. Introduction

Growing surfaces and interfaces moving in inhomogeneous media belong to the nonequilibrium
statistical mechanics problems, which have attached much attention due to its importance in
many fields, such as motion of liquids in porous media, growth of bacterial colonies, crystal
growth, the motion of flux lines in superconductors or flame fronts [1]. Several models
have been introduced in order to explain some experimental results [2–7]. In these models,
inhomogeneous media are simulated by a quenched disorder which brakes the advancement
of the interface. The continual motion of the interface requires the application of a driving
force F . An analogy is possible with the theory of critical phenomena: there is a critical
driving force Fc such that for driving forces below the critical one F < Fc the advancement
of the interface is halted after some finite time. This regime is called the pinning phase. While
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for F > Fc the interface moves without stopping with an averaged velocity v(F ), this regime
is the moving phase. As happens in critical phenomena, there is a phase transition at Fc,
called the depinning transition, and the velocity plays the role of the order parameter. The
characteristic length ξ of the pinned regions diverges at the transition and extends over the
whole system in the pinning phase. A scaling behaviour is observed near to Fc and the values
of the critical exponents lead to the classification of the models in universality classes.

A phenomenological nonlinear Langevin equation, the Kardar–Parisi–Zhang equation
with quenched noise (QKPZ) [2] and the directed percolation depinning (DPD) models
[3, 4] are the main models used to simulate driven interfaces in disordered media, which
belong to the DPD universality class. The DPD models were proposed simultaneously by
Tang and Leschhorn (TL model) [3] and Buldyrev et al [4]. The Kardar–Parisi–Zhang (KPZ)
equation is

∂th = F + ν ∇2h + 1
2λ (∇h)2 + η , (1)

where the d-dimensional interface is described by a single-valued function h(x, t) which
evolves in a (d + 1)-dimensional medium, ν and λ are constants, η is the noise and F is
the driving force. When the noise depends on time (annealed noise) and F = 0, we have the
KPZ equation [8]. If the noise does not depend on time (quenched noise) and F �= 0, we have
the QKPZ equation [2]. When λ = 0 in equation (1) and the noise is quenched this equation
belongs to the Edwards–Wilkinson (QEW) universality class [5, 6]. Several models have been
proposed to simulate driven interfaces belonging to QEW universality class [6, 7].

The relaxation process found in many glassy systems above the critical temperature
has a two-step decay [9]. The long relaxation step has the stretched exponential
form f(t) = f0 exp[−(t/τ)β], where 0 < β < 1 does not depend on the temperature. Two
mechanisms driving nonexponential relaxation have been proposed in glassy systems
[10, 11]. Both relate that behaviour to clusters of interactions. In the first mechanism, the
clusters of interactions are a direct consequence of the quenched disorder [12], while in the
other one, disorder is not needed to obtain nonexponential relaxation [13]. Colaiori and Moore
[14] have found a stretched exponential relaxation for the KPZ equation in the mode-coupling
approximation and given scaling functions [15]. In the TL model, the stretched exponential
relaxation is found in the steady-state regime where the clusters of pinned cells (pinned regions)
are responsible for this behaviour [16].

In this paper, we investigate the relaxation of the two-time autocorrelation function in the
steady-state regime for the DPD and QEW universality classes. For that we perform numerical
integration of equation (1) with quenched noise in 1 + 1 dimensions with λ �= 0 for the DPD
universality class and λ = 0 for the QEW universality class. We relate the relaxation properties
to the pinned regions. The paper is organized as follows. In section 2 we review some properties
of the pinned regions. In section 3 we present the model and the autocorrelation functions. The
steady-state relaxation is studied in section 4 for both universality classes. Finally, in section 5,
we present some conclusions.

2. Pinned regions

In the moving phase, when F → F+
c a typical pinned region extends over a length of the order

of ξ‖ in the direction parallel to the interface and a length of the order of ξ⊥ in the direction
perpendicular to the interface. On both sides of the depinning transition, the two lengths have
a power-law behaviour

ξ‖ ∼ |g|−ν‖ , ξ⊥ ∼ |g|−ν⊥ ,
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where ν‖ is the parallel correlation length exponent, ν⊥ the perpendicular correlation length
exponent and g ≡ (F − Fc)/Fc the reduced driving force. The two lengths are connected by
ξ⊥ ∼ ξ

ν⊥/ν‖
‖ . There is a saturation time, ts(L), which depends on the system size L, ts ∼ Lz,

where z is the dynamical exponent. For t 	 ts the roughness reaches its saturation value,
Wsat ∼ Lα, where α is the roughness exponent [6]. When t 	 ts, the mean interface height
has a linear behaviour H = vt and the steady-state velocity vanishes for F → F+

c as

v ∼ gθ , (2)

where θ is the velocity exponent [6]. Since, close to the transition ξ‖ ∼ L, we have

v ∼ h/t ∼ ξ⊥/ts ∼ ξ⊥/Lz ∼ ξ⊥/ξz
‖ ∼ gzν‖−ν⊥ , (3)

leading to

θ = zν‖ − ν⊥. (4)

From θ = ν‖(z − α) obtained in [6] and equation (4) we arrive at α = ν⊥/ν‖.
For the DPD universality class in 1 + 1 dimensions we have the following critical

exponents [3, 6]: ν‖ = 1.73 ± 0.04, ν⊥ = 1.09 ± 0.01 and z ≈ 1. Then, equation (4) takes
the form given in [3]: θ = ν‖ − ν⊥. For the QEW universality class we have the following
critical exponents [6]: ν‖ = 1.35 ± 0.04, ν⊥ = 1.66 ± 0.04 and z = 1.45 ± 0.07.

3. Model and autocorrelation functions

Equation (1), in 1 + 1 dimensions, takes the following form:

∂th = F + ν∂2
xh + 1

2λ(∂xh)2 + η(x, h), (5)

where the surface height h = h(x, t) depends on the one-dimensional coordinate x and the
time, F is the driving force, ν and λ are constants and the quenched noise η depends on the
one-dimensional coordinate x and the height h. The details of the numerical integration are
given in the appendix.

We define the probability distribution function of the height difference across the
interface as

C(z; t′, t) = 1

L

∑
j

δ[hj(t
′) − hj(t) − z]; (6)

this quantity was previously studied in a somewhat different context by Leschhorn and Tang
[17]. The Fourier transform of C(z; t′, t) in z is

Ck(t
′, t) = 1

L

∑
j

e−i[hj(t
′)−hj(t)]k, (7)

where k is the wave number. A numerical integration of equation (5) is performed and Ck(t
′, t)

is evaluated. We average Ck(t
′, t) over 100 different realizations of the quenched noise η.

4. Steady-state relaxation

For long enough times, t′ 	 ts, equations (6) and (7) depend only on the difference of times
t − t′; this is the steady-state regime where the mean interface height has a linear behaviour
H(t) = vt. This regime is reached at longer times when we approach the critical driving
force Fc.
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Figure 1. Ck(t) in the steady-state regime for λ = 1, F = 0.42 and k = π (solid line), π/3 (dotted
line), π/5 (dashed line), π/7 (long dashed line) and π/9 (dot-dashed line).
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Figure 2. Log–log plot of Ck(t) for λ = 1 where k = π and F = 0.52, 0.50, 0.48, 0.46, 0.44, 0.43,
0.42, 0.41, 0.40, 0.39, 0.38, 0.37 and 0.365 (from left to right). Dashed curves are fitting functions
corresponding to the stretched exponential functions.

4.1. DPD universality class

Equation (5) belongs to the (1 + 1)-dimensional DPD universality class when the constant
λ �= 0. In this case, we find a two-step relaxation decay in the steady-state regime. We can see
in figure 1 that the time interval of the first and second relaxation steps depends on the wave
number k. Nevertheless, the form of the second relaxation step does not depend on k. For
small enough k we only have one-step relaxation process. So, there is a wave number ke where
the two-step relaxation decay is lost for k < ke and we can obtain a wavelength λe = 2π/ke in
the direction perpendicular to the interface.

The time interval of the second step increases when F is decreased, i.e. when the system
approaches criticality. As seen in figure 2, the second relaxation step can be fitted by a stretched
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Figure 3. Scaling plot of Ck(t); the dashed curve is a stretched exponential function with β = 0.8.
Inset: log–log plot of the prefactor 1 − f0 as a function of g. The solid curve is a power-law
function 1 − f0 = 0.49g0.2.
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Figure 4. Log–log plot of the relaxation time τ, obtained by the stretched exponential fit in figure 3,
as a function of g. The solid curve is a power-law function τ = 3.8g−1.73. Left inset: log–log
plot of λe as a function of g for F = 0.46, 0.44, 0.43, 0.42, 0.41, 0.40, 0.39, 0.38, 0.37, 0.365 and
0.361. The solid curve is a power-law function λe = 6.1g−1.1. Right inset: log–log plot of λe as
a function of τ for F = 0.46, 0.44, 0.43, 0.42, 0.41, 0.40, 0.39, 0.38, 0.37 and 0.365. The solid
curve is a power-law function λe = 2.65τ0.66.

exponential relaxation function, f(t) = f0 exp[−(t/τ)β], with the exponent β = 0.80 ± 0.01.
This exponent is independent of F . The relaxation time τ and the prefactor f0 are obtained
from the scaling plot of Ck(t) in figure 3. From the inset of figure 3 we propose the following
scaling law for the prefactor f0:

f0 = 1 − A0g
κ, (8)

with A0 = 0.49 ± 0.05, κ = 0.20 ± 0.05 and Fc = 0.345 ± 0.005.
In figure 4, we see that the relaxation time τ is very well fitted by a power law τ ∼ g−ν‖

with Fc = 0.345 ± 0.005 and ν‖ = 1.73 ± 0.02. This means that τ is proportional to the
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Figure 5. Log–log plot of Ck(t) for k = π, with the same f0 and different values for the constants
of equation (5): λ = 1 and ν = 1 (solid line), λ = 1.5 and ν = 1 (dotted line), λ = 2 and ν = 1
(dashed line), λ = 2.5 and ν = 1 (long dashed line), λ = 5 and ν = 2 (dot-long dashed line) and
TL model obtained in [16] (dot-dashed line).

characteristic length of the pinned regions in the direction parallel to the interface, ξ‖, which
also diverges with the same exponent.

In figure 4 (left inset), we show λe as a function of g. This length diverges as a power
law λe ∼ g−ν⊥ with Fc = 0.350 ± 0.005 and ν⊥ = 1.10 ± 0.03, so that λe is proportional to
the characteristic length of the pinned regions in the direction perpendicular to the interface,
ξ⊥, which also diverges with the same exponent. From τ ∼ ξ‖, λe ∼ ξ⊥ and ξ⊥ ∼ ξα

‖ , we have
λe ∼ τα; in figure 4 (right inset), we can see λe as a function of τ, with α = 0.66 ± 0.01.

We see that the characteristic length of the pinned regions in the direction parallel to the
interface, ξ‖, sets the time scale of the stretched relaxation function. On the other hand, the
stretched relaxation step is lost for wavelengths larger than λe, i.e., for wavelengths λ � ξ⊥.
So, the stretched exponential relaxation is caused by the pinned regions. From the fit of our
results we have the following scaling function for the second relaxation step of Ck(t):

Ck(t) = (1 − A0g
κ) exp[−(A1g

ν‖ t)β], (9)

where A0 = 0.49 ∓ 0.02 and A1 = 0.26 ∓ 0.01 are constants obtained from the fit in figure 3.
From the results obtained for the TL model in [16], we have the same scaling function for this
model but with κ = 0.25 ± 0.03, ν‖ = 1.733 ± 0.001, β = 0.805 ± 0.005, A0 = 0.65 ∓ 0.05
and A1 = 0.95 ∓ 0.03. The TL model and the QKPZ equation belong to the DPD universality
class and the exponents obtained in equation (9) are the same within the errors for both models.
In order to check if the β exponent depends on the details of the model or it is universal, we
plot in figure 5 Ck(t) for different values of the constants λ �= 0 and ν in equation (5) and also
for the TL model obtained in [16]. We choose all of them with the same prefactor f0. It is
shown that the second relaxation step is fitted very well with the stretched exponential function
with β = 0.80 ± 0.01.

4.2. QEW universality class

Equation (5) belongs to the (1 + 1)-dimensional QEW universality class when the constant
λ = 0. The results obtained in this case are similar to the ones found for the DPD universality
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Figure 6. Log–log plot of Ck(t) for λ = 0 where k = π and F = 1.01, 1.006, 1.003, 1.00, 0.998
and 0.996 (from left to right). Dashed curves are fitting functions corresponding to the stretched
exponential functions. Inset: scaling plot of Ck(t) with f0 = 0.76 ± 0.01. The dashed curve is a
stretched exponential function with β = 0.34.
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Figure 7. Log–log plot of the relaxation time τ, obtained by the stretched exponential fit in
figure 6, as a function of g for F = 1.01, 1.006, 1.003, 1.00, 0.998, 0.997 and 0.996. The
solid curve is a power law function τ = 0.0042g−1.95. Inset: log–log plot of λe as a function of τ,
for F = 1.01, 1.006, 1.003, 1.00, 0.998, 0.997 and 0.996. The solid curve is a power law function
λe = 6.65τ0.44.

class. We obtain a two-step relaxation decay where the second step can be fitted by the stretched
exponential function, as seen in figure 6. The value of the exponent β = 0.34 ± 0.01 does
not depend on F and the prefactor f0 = 0.76 ± 0.01 is practically constant for the range of F

studied here.
Figure 6 (inset) shows the scaling plot of Ck. From this scaling fit, we obtain the relaxation

time τ which follows a power-law divergency τ ∼ g−1.95±0.05 with Fc = 0.990 ± 0.008
(figure 7). We expect that τ ∼ ts ∼ ξz

‖ with τ the time scale of the relaxation function, then
τ ∼ g−zν‖ where zν‖ ≈ 1.95 ± 0.15 [6], as obtained in figure 7. Figure 7 (inset) shows λe as a
function of τ which follows a power law λe ∼ τγ with γ = 0.44 ± 0.01.
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We see that the time scale of the stretched relaxation function is set by a power of the
characteristic length of the pinned regions in the direction parallel to the interface, ξz

‖. On
the other hand, a simple relation between the other parameters of the relaxation and the static
properties of the pinned regions does not exist.

The scaling function for the second relaxation step of Ck(t) is

Ck(t) = f0 exp[−(A1g
zν‖ t)β], (10)

where f0 = 0.76 ∓ 0.01 and A1 = 238 ∓ 1 are constants obtained from the fit in the inset of
figure 6. We also obtain the same value of the β exponent for the constant λ = 0 and different
values of the constant ν in equation (5). So, the exponent β of the stretched relaxation step
depends on the universality class.

5. Conclusions

We have studied relaxation properties for driven interfaces in disordered media in 1 + 1
dimensions. We have used the QKPZ equation (λ �= 0 in equation (5)) and the QEW equation
(λ = 0 in equation (5)) and studied the relaxation properties of the Fourier transform of
the autocorrelation of the surface height. A two-step relaxation process is found in both
models. The second relaxation step is well fitted by a stretched exponential function with
β = 0.80 ± 0.01 in the DPD universality class and β = 0.34 ± 0.01 in the QEW universality
class. This exponent depends on the universality class of the model. The relaxation time
diverges as a power law in both universality classes. In the DPD universality class, this
relaxation time is proportional to the characteristic length of the pinned regions in the direction
parallel to the interface, ξ‖. On the other hand, in the QEW universality class, it is proportional
to ξz

‖, so it grows faster than ξ‖. The form of the second relaxation step does not depend on the
wave number of the Fourier transform. In the DPD universality class, this step vanishes for a
given wavelength λe, which is proportional to the characteristic length of the pinned regions
in the direction perpendicular to the interface, ξ⊥. On the other hand, in the QEW universality
class, a simple relation between the others parameters of the relaxation and the static properties
of the pinned regions does not exist. Thus, the stretched exponential relaxation behaviour is
caused by the pinned regions, which appear as a direct consequence of the quenched noise.
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Appendix

We perform the numerical integration of the equation (5) using finite-difference methods
[18–20]:

h(xj , t + �t) = h(xj , t) + �t

[
ν∂2

xh + λ

2
(∂xh)2

]
xj

+ �t η(xj , h). (A.1)

In the operators containing spatial derivatives, we introduce their finite-difference
approximations. For the operator ∂2

xh we use the approximation with error O((�x/L)4),
instead the one used in [18–20], which has error O((�x/L)2), where L is the lateral size of
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the system,

∂2
xh = 1

12�x2
[−h(xj − 2�x, t) + 16h(xj − �x, t)

− 30h(xj , t) + 16h(xj + �x, t) − h(xj + 2�x, t)]. (A.2)

For the nonlinear term, we use the finite-difference approximations with error O((�x/L)4)

for ∂xh

(∂xh)2 =
(

1

12�x
[−h(xj − 2�x, t) + 8h(xj − �x, t) − 8h(xj + �x, t) + h(xj + 2�x, t)]

)2

.

(A.3)

With these approximations we have convergency of our integrations using a �t larger than
with the approximations of error O((�x/L)2) used in [18–20]. As in [20] we take the linear
interpolation of the noise term into account

(1 − p)η(x, [h(x, t)]) + pη(x, [h(x, t)] + 1), (A.4)

where [ . . . ] denotes the integer part, with p = h(x, t) − [h(x, t)].
We work with square lattice systems of edge L = 10 000, �x = 1 and periodic boundary

conditions in the x-direction. η is uniformly distributed in [−a/2, a/2] with a = 102/3; the
conclusions of this paper are independent of a and the same results in the universal findings are
obtained if a Gaussian distribution is chosen. We use �t = 0.01 (with this choice we ensure
the convergency of the results). The initial condition is h(x, 0) = 0. The averages are taken
over 100 different realizations of quenched noise.
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